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Field-driven interface dynamics of a random soft-spin Ising 
model 
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Duisburg 1. Bderal Republic of Germany 

Received 26 October 1992 

AbsIraeL The kinelics of an inlerface between spin-up and spin-down domains in a soft- 
spin lsing model with quenched random fields and driving magnetic field H is studied 
numerically within a discrete time dynamics at zero temperature. Spins are updaled in 
parallel starting fmm a Rat interface. I1 is found that for fields smaller lhan a threshold 
field H, the interface is pinned while above H, tlie mean velocity of the inlerface 
increases proportional to ( H  - H,) for two- and three-dimensional systems. 

The motion of an interface in a random medium is a problem of great importance 
since it arises in quite different areas of research, for example the motion of a 
domain wall in a magnetic material with quenched disorder [l] or the immiscible- 
fluid displacements in porous media [2]. In magnetic systems interfaces or domain 
walls can be formed by cooling the system to low temperatures which results in slowly 
decaying metastable configurations [3] .  A stable phase eventually grows out of these 
domains of opposite spin polarity. For large domains part of the interface can be 
regarded as planar. It is then an interesting problem to study the motion of such a 
planar structure in a random medium. Most of the attempts to solve this problem 
are based on equations of motion for the position of the interface which is treated 
as an elastic membrane [4-91. An alternative approach is to use generalized local 
spin models where the interface separates two domains that correspond to regions 
of opposite magnetic moments in a magnetic system or different fluid phases in 
fluid invasion. An applied magnetic field or pressure in fluids causes one of the 
domains to grow. Describing the spin system by an Ishg model with hard spins 
S = &1 and using the conventional Monte Carlo technique one runs into problems: 
at vely low temperatures the motion of the interface becomes extremely slow so that 
it is very difficult to study the asymptotic motion of the interface and its pinning 
behaviour. In addition, within this approach at finite temperatures true pinning can 
never be observed since there is always a finite probability for the interface to move. 
A hard-spin model in which this is avoided has been discussed by Ji and Robbins 
[lo]. In their work the interfacial growth is simulated by increasing the driving field 
during simulation in such a way that the interface is not trapped. This is certainly 
an interesting growth model in its own right although the physical relevance of a 
continuous increase in the driving field remains obscure at least for magnetic systems. 

The above-mentioned difficulties are not present in soft-spin models which have a 
non-trivial dynamics wen at zero temperatures. The model considered in this paper 
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is essentially a discrete a4 theory with an assumed purely relaxational dynamics and 
a scalar order parameter. It should therefore be in the Same universality class as 
the hard-spin model. Random field effects can be introduced easily. The soft-spin 
model has the additional advantage that it does not rule out overhangs from the very 
beginning as is done in models which treat interfaces as elastic membranes. Note 
that the model considered is similar in spirit to the one introduced and applied to 
domain growth in magnets by Puri et af [ll]. As in that work one may consider the 
energy of the soft-spin model as the coarse-grained energy of an underlying hard-spin 
king model, a realistic model for certain magnetic systems. In this sense our model 
appears to be a model for magnetic systems on a mesoscopic scale. 

K D Usadel and M Jmi 

The Hamiltonian describing the soft-spin king model is 

where S, are soft spins (-CO < S, < CO) at lattice points 1, the first sum with U" > 0 
is a site diagonal energy fixing the length of spins (see below), the second sum is 
the spin interaction while the thud sum is the interaction with the magnetic field. 
In the present paper we consider only random field effects. In this case the spin- 
spin interaction J,,,, is translationally invariant with J,, ,  = J and J,,, ,  = J where 
1,1' are nearest-neighbour pairs on a ddimensional lattice and the magnetic field is 
split conveniently into a random field part E, and a homogeneous driving part H as 
seen in equation (1). Note that in the second term in equation (1) a diagonal term is 
subtracted where z is the number of nearest neighbours so that the interaction term is 
just a discretized Laplacian. Experimentally, a realization of the random field model 
is a diluted antiferromagnet in an applied magnetic field [12] so that the interface 
dynamics studied in this paper is also relevant to these types of material. 

The dynamics of the present model at zero temperature T = 0 is defined by the 
relaxation equation 

ax 79, = -as, 
with a relaxation time proportional to y. Finite temperature effecn can be taken 
into a m u n t  by adding an appropriate stochastic term to equation (2). In this paper, 
however, only T = 0 is considered. 
TI get acquainted with equation (2) two simple special cases are worth discussing. 

First, replacing the Hamiltonian by the first term of equation (l), one gets 

yS, = -uo(s: - 1)S, (3) 

i.e. independent spins relax to their equilibrium values S = & I  depending on their 
initial conditions at a certain time. Second, replacing the Hamiltonian by the first 
two terms of equation (l), one gets 

showing that, in the homogeneous case, spin configurations with all spins up and all 
spins down, respectively, are stationary states of the system. 
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For the simulation of the motion of an interface in a random field, the equation 
of motion, equation ( Z ) ,  is integrated over a small time interval resulting in a set of 
difference equations 

S , ( T + A T ) =  S , ( T ) + A T  -u(Sf-l)Sf t C S , , - + S j t h t b , ]  
I' 

where magnetic fields are measured in units of J ,  time is measured in units of r / J  
and U = u,/J.  Equation (5) is iterated starting from a flat initial interface. 

To be more specific in the case of a square lattice with 1, sites in the +direction 
and I ,  sites in the ydirection the initial values for all spins with z-coordinates 
between -1=/2 and 0 are set to their equilibrium value S = 1 while the rest of 
the spins are set to S = -1. Spins are updated in prallel. For a positive driving 
field the interface eventually moves to the right. After a certain number of updates 
(typically of the order of ten) the position I, of the interface is recorded and set 
back to x = 0. This is achieved by adding I, new rows of spins at the right-hand 
side and removing the same amount of rows from the left-hand side of the lattice. 
Then, all spin positions are relabelled. The position of the interface, xu, is obtained 
from the row magnetization (S), which is an average over all spins in the row +. 
This row magnetization is a step function initially and it develops a tanh shape due 
to a roughening of the interface. At zo the row magnetization changes sign. In the 
xdirection the boundary conditions are S = 1 at the left-hand site and S = -1 at 
the right-hand site while periodic boundary conditions are used in the ydirection. 
Throughout, the parameter U is set equal to 0.9 and if not otherwise stated A T  = 0.1. 
The discretized version of the model, equation (S), is an interesting problem in its 
own right and therefore we did not change A T  systematically but kept it mostly at 
a fixed value. The random fields b, are independent quenched variables drawn with 
equal probability from an interval between - p  and p. 

In the present investigation we are primarily interested in the averaged velocity 
of the interface as a function of driving field h and disorder parameter p in a steady- 
state situation. l'b reach this steady-state typically the first t o  updates were disregarded 
and the following t l  updates were taken for a calculation of the averaged velocity. 
Figure 1 shows the position X of the interface as a function of time f-measured in 
number of updates-for different values of h for p = 0.2. A steady state is reached 
after t ,  N lo00 updates. For large magnetic fields the increase in X is linear with 
only minor scattering. For smaller fields the fluctuations around a linear behaviour 
are more pronounced since then the interface is pinned in a stochastic way for some 
updates and then it moves again (see the inset in figure 1). 

The averaged velocity V of the interface is calculated from the data points of 
figure 1 for t > to. Figure 2 shows V as a function of the driving field for two 
values of the strength p of the random field. The data are fitted with great accuracy 
to straight lines. For other values of p ,  not shown here, the Same behaviour is 
observed. A linear dependence of V on h - h, has also been obtained by Leschhom 
17 from a mean-field calculation of an equation-of-motion approach to the interface 
mobility. The inset in figure 2 shows the threshold field h, as a function of the 
disorder parameter p. The measuring time was only half of that used in figure I. 
Although there is some scattering in the data we believe that it is safe to say that 
pinning occurs for any amount of disorder if the driving field is small enough. 'he  
results discussed above were obtained for square lattices with 1, = 180 and 1, = 300. 
Finite-size effects have been checked but they appear to be negligible. 
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Figure L Position A’ of the inlerface in unils of latlice constan1 against time t (number 
of updates) for dinerent values of driving field h .  h = 0.05. 0.04, 0.03, 0.02. 0.01625 
(from above). ?he insel shows the curve h = 0.01625 enlarged. I> = 0.2 for all NIV~S. 

Figure 2 Interface velocity V in units of lattice mnslanllupdate against driving Reid h 
in d = 2 upper curve. p = 0; lower CUI% 1’ = 0.2. h and )I are dimensionless as 
explained in the texl. ?he inset shows the threshold field It, against 11. 

Some results for three-dimensional systems are displayed in figure 3. The 
calculations were restricted to p = 0 and p = 0.2 and the system size was 90 x 60 x 60. 



Random sof-spin Ishg model interface dynamics 1787 

h 

Figure 3. Interface velocity V against driving 
field h in d = 3 for p = 0 (upper furve) and 
p = 0.2 (lower curve). 

Obviously, the linear size of the lattice had to be smaller than that for two-dimensional 
systems but our experience from the calculations in two dimensions was that the size 
of the system is not crucial in determining the critical fields and the corresponding 
exponent, so we consider this lattice to be sufficiently large. Perhaps surprisingly, 
figure 3 shows that in three dimensions a linear dependence of V on h - h, is also 
observed. 

Finally, we have varied AT in equation (5)  to study the effect of time 
discretization. Decreasing AT by a factor of five again a linear dependence of 
V on h - h,, is observed with practically no change in the threshold field but with 
some change in the slope of that line. This result was obtained for p = 0.2. Since 
there appears to be no dramatic effect on time discretization we did not dwell any 
further on this problem. 
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